Posts Tagged ‘worm holes’

I love books like a wino loves wine. So I feel pretty drunk every April when the LA Times Festival of Books rolls around. Critics say we’re all blond and superficial in Southern California. You can see just how wrong this stereotype is when you’re surrounded by bookworms and lit geeks of all sizes, shapes and cultures at the festival.

Susskind signs the book he wrote about his war with Hawking

Susskind signs the book he wrote about his war with Hawking

As a science geek, I felt morally obligated to attend the Real Science panel on Saturday morning. The panel was moderated by science writer K.C. Cole and featured her fellow science writer Carl Zimmer, odor scientist Avery Gilbert and theoretical physicist Leonard Susskind.

Susskind’s latest book is The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics, his chronicle of the intellectual battles over the meaning of black hole entropy and the ultimate fate of decaying black holes.

Susskind told the audience he was grateful for the extreme intellectual puzzle posed by black hole entropy, given that his generation in physics was too young to have participated in the great quantum mechanics and relativity revolutions on the Einstein era. Instead they were left to “clean up the mess” left behind by their elders, turning the primitive and confusing subject of relativistic quantum mechanics into the elegant theoretical powerhouse of quantum gauge field theory.

Before I heard Carl Zimmer talk about his new book Microcosm: E. coli and the New Science of Life, I had no idea that the humble and ubiquitous intestinal bacteria E. coli has won twelve Nobel Prizes in science — which is ten more than any multi-celled organism on record.

What scientists have learned about E. coli “challenges our assumptions about life,” Zimmer said. Despite their apparent simplicity, each E. coli cell acts like a distinct individual. If 747s behaved like E. coli, then two identically built planes would exhibit completely different behaviors when you tried to fly them.

Another surprising and philosophically challenging aspect of e-coli is their ability to organize socially into competing tribes that compete for food and make tribal war. I’ve always thought of war as a human behavior that was learned. If even single-celled organisms can organize into tribes and make war, then the instinct for war is an instinct that is basic to life itself.

Panel moderator K.C. Cole

According to the third panelist, fragrance scientist Avery Gilbert, , fresh oysters exude the same chemical responsible for the smell of pinto bean farts. That’just one of the peculiar things you’ll be able to learn in his book What the Nose Knows: The Science of Scent in Everyday Life.

Whenever we stress out over nuclear proliferation in the news, we’re feeling the legacy left to us by J. Robert Oppenheimer, our “Father of the Atomic Bomb.” His brother Frank left a more peaceful and enjoyable legacy in San Francisco’s Exploratorium, a “museum of human awareness” that combines science education with art and just plain fun. K.C. Cole, a longtime friend of the non-nuclear Oppenheimer, drew on letters and extensive interviews for her personal portrait Something Incredibly Wonderful Happens: Frank Oppenheimer and the world he made up.


Get well soon Stephen Hawking

Me in Woody Creek

Me in Woody Creek

There’s a photograph buried in my closet that was taken in the old days of analog photography and has never been digitized and hopefully never shall be. It shows a much younger me reclining on the sand at Club Med in Marbella, topless, as is the norm in such places, holding in front of me a copy of “The large scale structure of space-time” by S.W. Hawking and G.F.R. Ellis.

The sublime Mediterranean sunshine, the water skiing lessons over the glittering waves, the entwined aromas of salt air and freshly caught fish sizzling on the grill — it all went away for an hour or so while I took a swim in Chapter 4 — The Physical Significance of Curvature.

This is an extremely sexy chapter, and not just because curves are sexy. What’s especially sexy about this chapter is the way it begins with the simple idea of the spacetime paths of massive and massless objects, and ends up laying out the basic mathematical conditions for spacetime singularities and time travel.

Now how does this happen? The key to all this is known as Raychaudhuri’s equation, discovered independently by Indian physicist Amal Kumar Raychaudhuri and Soviet physicist Lev Davidovich Landau. This fantastic equation, also known as the focusing equation, tells us when the spacetime curvature of a given gravitational system will force light cones to collapse and form spacetime singularities and when the curvature will keep them from converging, allowing conditions to develop where time travel is at least theoretically possible.

Time travel, water skiing and grilled fish make for quite a day at the beach.

Here’s to a beautiful man and to all of his beautiful books!